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Abstract—An analysis is presented for the determination of the rotational response of a rigid circular
disc embedded in a semi-infinite elastic medium under the action of a rocking moment. With the
aid of Hankel transforms, a relaxed treatment of the mixed boundary value problem is formulated
as dual integral equations. On reduction of the dual integral equations to a Fredholm integral
equation which features a closed-form kernel, solutions to the inclusion problem are computed. In
addition to providing a unified view of existing solutions for zero and infinite embedments, the
present analysis reveals a severe boundary-layer phenomenon which is apt to be of significance to
this class of problem in general. As illustrations, numerical results on the loud—displacement relation
and the responase of the embedding medium, as well as the contact load distribution, are included.

1. INTRODUCTION

On the subject of structure-medium interaction, one class of fundamental problems is the
determination of the response of a loaded rigid disc which is in contact with an clastic
medium, These analyses are relevant to engineering in the context of soil-structure inter-
action, footing and anchor designs. They are also related to the analysis of indentation
processes, steess concentrations, and fracture mechanics of composite materials. For this
category of problems, considerable attention has been paid to the case where the disc is
resting on the surface of an elastic half-space as in Boussinesq (1885), Reissner (1937),
Abramov (1939), Reissner and Sagoci (1944), Harding and Sneddon (1945), Sneddon
(1947, 1966), Bycroft (1956), Ufliand (1956), Keer (1967), Spence (1968), and Gladwell
(1969). A varicety of problems associated with a disc buried in an infinite medium have also
been considered as in Collins (1962), Keer (1965), Hunter and Gamblen (1974), and
Selvadurai (1976, 1980). On solutions pertaining to a disc embedded at a finite depth ina
half-space, however, only the axisymmetric cases of torsion and axial translation have been
investigated (Pak and Saphores, 1991 ; Pak and Gobert, 1990).

This paper is concerned with the determination of stresses and displacements in the
interior of a half-space when an embedded rigid disc is forced to rotate about a horizontal
centroidal axis. Within the framework of linear elasticity, the asymmetric mixed boundary
value problem is reduced to a set of dual integral equations. Under appropriate limiting
conditions, the analytical formulation is shown to encompass the corresponding full-space
and surface-disc problems as degenerate cases. Through this exposition, a severe boundary-
layer effect on the contact load distribution is revealed. For practical applications, the
rocking stiffness of the embedded disc and the response of the medium as a function of the
embedment depth are included.

2. MATHEMATICAL FORMULATION

Consider a rigid disc of radius a located at a depth 5 in a homogeneous, isotropic,
lincarly elastic half-space. As shown in Fig. 1. the disc is assumed to be undergoing a rigid
body rotation Q about the y-axis due to a set of loads equivalent to a moment. In cylindrical
coordinates, a relaxed treatment of this mixed boundary value problem can be stated in
terms of the components of the displacement field u and the stress field o as follows:
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RIGID DISC
HALF -SPACE

Fig. 1. Rocking rotation of a rigid disc in a half-space.
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Here, R(r,0; 5) denotes the unknown resultant normal contact stress distribution acting on
thediscat z = 5. Asan unbounded region is under consideration, the foregoing requirements
must be adjoined by the regularity conditions at infinity that

a—0 uas \/r+:-»a(v . (10)

To obtain a mathematical formulation for the problem under consideration, it is useful
to determine first the displacement response of a half-space under an arbitrary vertical body
force field R(r,0;s) distributed on the - =y plane. For this purpose, the method of
potentials by Muki (1960) is useful. As a specific reduction of the general Boussinesq-
Somigliano—-Galerkin solution, the method entails representing the solutions to the dis-
placement equation of equilibrium with zero body-force field in terms of a biharmonic field
¢ and a harmonic field ‘¥, i.c.,

Vid=0. V¥=0 (th
where
. Lo e 1t &
Vi=VV:, V= (m + - f + -5 ~>(~-~; + . (12)
ors  rér orm 00 Oz

in cylindrical coordinates. In terms of the two potentials, thc components of the dis-
placement vector and the stress tensor can be expressed as

30 2% 1 &0 _¢v , &
— ey = —— 2 =2l -V — — 13
5t 2uuy 2ar‘ 2uu. = 2(1—v) (13)

2pu, = ; 20 6- e

and



Rocking rotation of a rigid disc in a half-space 391

- ; (VV‘ 2 )q; 22 (3 2 - ;‘E)w (14)

. 2((”*»-?}?' ;j )@ {16}
a:,=§;(<1wwf~§;)®+§§§5 1t

g,g=f:?§%‘[§ g]ib—{zgg—;;}? (19)

where g and v are the shear modulus and the Poisson’s ratio of the medium, respectively.

By virtue of the completeness of the set of eigenfunctions {¢™"}7, . for the class of

solutions under consideration, one may write

o

Mr. 0, z;8) = }: @, (r, 25 )™ 20)
e - &
Wir sy = Z W_(r,z; )™ on
ot -
R{I\ {); .Y} ] Z Rﬂ:{f; S}{,mﬂi‘ ete. {22

Owing to the orthogonality of {¢™*}, it is evident that (11) implies
Vlfnv.f.‘l’m = 0« ng\{”m =0, VYm (23)

é’ 1 m &

R
I P B 1

Vo= (24)

In view of the differential operators and boundary conditions involved, it is natural to
appeal to the theory of Hankel transforms in the solution of the foregoing equations. To
this end, one defines the mth order Hankel transform as

q) = J; St (Erydr (25)

where J,, is the Bessel Function of the first kind of order m. With the aid of {25} with respect
to the radial coordinate, the partial differential equations in (23) can be reduced to two
ordinary differential equations for each pair of & and 97,

On account of the regularity conditions at infinity in the problem under consideration,
the general solutions can be expressed as
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P (D +2BL (N e T HCLE) +:DN ™. = <)
m(se 28} = (A + 2By e ¥, s> 54 (=6)

P ais) =

[En(De “+F (e, <5 ,
27

VENE) e, s>l
By virtue of {(23~(8). the functions AL(S).....ENt). and thus the full solution for the
auxiliary problem. can be determined exphcxtiy in terms of the transform of the Fourier
component R, (r:s) of the contact load distribution. From {1). one may further deduce
that

Ry=R.i R,=0. meg{l,—1}. {28}

Accordingly, the vertical component of the displucement field can be expressed as

udr 0.2} = 2u. (r.2)cos 0 29
wherg
t; {r.2) = J Q& 2 v}szl(i—s«).f;{g)(k {30)
Zisy = RiCs) 30
I (~dv+3lz~she ¥y )
. = 3 w ) 32
Sz B~ )& ((5~ 1204807 4 (3 —dv) (2 +5)E 4+ 22587y B0 (32

With the aid of (29) and (30). it can be shown that the remaining two conditions (1) and
{9) of the mixed boundary value problem are equivalent to the dual integral equations

j Q.25 .}"‘é‘{‘*"}ﬁ,m S»}i r<a (33a)
] it -
and
f EZUE N (ENdE=0, r>a (33b)
4
where
_ 3—4y S—12v48° z:zsf> }
Z g m o Wgd o0 Jor e 34
Q.(C.5:9) 81 =) {f+( 3_ay FRSE g0 (34)

with the property that

(‘& 4v}
M -3 = . o 35
‘}:p}c QS sy = 81 v) {3%)
By setting s = 0 in (33), onc finds that the governing equations become
Q
j 1, {i, g: gfszg{s‘e}.}}{g }dg-—"“"{; [y ] {3&&)
t

and
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J‘ ¢Z,(5:0J(¢nd¢=0, r>a (36b)
o

with

0.(6,00) = “g"’. (37)

Upon interpreting Z,(¢:0) as the transform of the contact normal stress distribution
underneath the disc, the formulation in (36) is identical to the one for a rigid punch in
smooth contact with the surface of a half-space.

3. REDUCTION OF DUAL INTEGRAL EQUATIONS
With the aid of Sonine’s integrals as in Noble (1963), eqn (33) can be transformed to

| . _8(1-v) 2r
j\“ ﬁ(l+Hs({))z(és5)-’”2(r€)d§ = WQ\/:?, r<a (383)
and
1
J; ;—/EZ(C:S)-’:;:VC) dé=0, r>a, (38b)
where
Z(e:s = 283 (39)
®
_[5—-12v+8V 28’ g,
H(§) = (‘—3-:];‘—' +2§s+ m)e . (40)
For further reduction, it is useful to express
‘r : Z(E: ) dé = \/5 4
0 —\72 (Evs) lIZ(rf) é"" ;;n:(r)’ r<a ( l)

where n,(r) is an unknown function. By taking n,(r) = 0 for r > q, it is evident that the
foregoing representation of Z would satisfy (38b) identically. From the Hankel inversion
theorem, it also follows that (41) yields

Z¢g; s = \/gf” ? j; r'n,(r)J (&) dr. (42)

Upon substituting (42) into (38a), one can readily verify that the governing dual integral
equations are equivalent to a Fredholm integral equation of the second kind

n,(r) + L K, (r,p)n.(p)dp = £,(r) (43)

where
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Kirpy=yrp | SHUOT (i), (pd) de (44)
o .8,“ u\')Q

For the present problem. the kernel of the integral equation can be evaluated in closed form
as

Kir.py = kir—py—kir+p) (46)
where
2 (5—12v+8v9) s (ds*—sx7) 2 (85T —6s5'xY)
K(x) = - — . ; . v —— 1.
) zz[ G—4v)  (CHdsT) (st (3—dy) (V457! @7

For the case of s = 0. the analysis of the dual integral equations is considerably simpler. In
fact, by the same transformation in (41), the solution to (36) can be written as

Qr

=y

'fu(*") = (48)

4 SOLUTION OF FREDHOLM INTEGRAL EQUATION

Before proceeding to the treatment of the general embedment problem, it is refevant
to examinge some special cases for which closed-form solutions are available.

Case A5 —
For the case of a disc buried in an infinite medium, the kerael (46) degenerates to zero
and the solution can be immediately written as

B(1—v)

3 dr Qr. (49)

W, (ry =

Cuse B.s =0
As indicated in the preceding section, the solution to the case of a disc acting on a half-
space s

Qr
—v

nolr) = (59

An interesting but peculiar result though is the solution obtained in the limit of s — 0 in the
general embedment problem. To this end, it is uscful to recognize that

3

. s b T .
DR A 5 Ty ) X))y pymeeyey b = 0(x .
SR T 00 e T ey e
oyl T ) 5 In 5(x). as 5 — 0 (51)
et - ; L e X). as v =
) T o0 () T as6

where §(x) stands for a symmetric Dirac delta-function in the theory of distribution. With
the aid of (51). one can readily sce that
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Fig. 2. Typical solutions for 5, (v = 0.25).

—12v 8! ‘
“f‘}) Kir.p) = é“j—fg:*i {d(r—p)—=3(r+p)} (52)

and the Fredholm integral equation yiclds

Qr
. r<a

Mt =4 ' (53)
16(1 — v)Qa

s r—y

1l —-20v+-8v2°
which exhibits a finite jump at the edge of the disc.

Case C:0<s < a0

For finite embedments, numerical solutions of the integral equation can be obtained
by standard quadrature methods. Typical solutions for #, are shown in Fig. 2. As portended
by (53), it can be seen that there is a severe boundary layer in the solution at the edge region
of the disc as the embedment depth tends to zero. The implications of the jump of 5, and
the emergence of the boundary layer in such a limit process will be explored in a later
section.

5. ROCKING STIFFNESS

The moment M, required to sustain the rotation Q is defined by
M, = j Jv R(r,0; 5)r? cos 0 df} dr. (54)
o Jo

By virtue of (28). (31). (39). (42). and the identity

* 2
J‘ Jiéaysin(ér)dé ==, r<a, (55
(]

2,
&a

~y

{54) can be simplified to
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Fig. 3. Rotational stiffness of dise as a function of embedment.

M, = 8u J iy {rydr {56}
i

which can be evaluated directly in terms of the solution of the Fredholm integral equation.
Fors - 2, (50) yiclds

3 641 —v)ua'QQ

M o=
4 33 —-4dv) 37
as in Selvadura (1980). Fory = 8§, one finds
Bulde’
M, o=
!, 31 —1) {58)

which is in agrcement with Abramov (1939) and Bycroft (1956). The general rocking
stiffness, which is defined as

' 59

as a function of x is illustrated in Pig. 3, From the display, # is evident thut the stiffness
increases with the depth of embedment as well as Poisson’s ratio. As s reaches the value of
4y, however, the stiffness appropriate to s — oo is virtually attained,

6. CONTACT LOAD DISTRIBUTION

By virtue of the Hankel inversion theorem, eqn (42) yiclds the distribution R (r; )
pertaining to the contact load on the disc as

"; ¥ W
Riir:x) = ;1\/;j &t EJ‘ p! 1?}‘{{})1‘:3(5{))d]’j;(&:f) dg. {60)
i¥ k2]

With the aid of the identity
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0, p<r
ﬂ sin(Goutinde=¢ 1, 6

one finds the resultant contact load distribution

ducos® d “ n,(p)
. ) 67
n dr J, /p:_r: dp (62)

With an integration by parts, eqn (62) can be reduced to

“poni(p)d
R(r.8:5)=%[ an,{a) L] enie) p]cos 6. (63)

r /= T /pz_rz

R({r.8:5) = —

For 5 — %, eqn (63) yields
32(t—v)u Qrcos @

Rir.0:m) = — 3 N ref0.a). (64)
For s = 0, one finds
4 Qrcos®
R(r0:0)= 2 2T 7 L ep0.a). (65)

K- o

in view of the difference between the solutions (53) and (50), however, one can anticipate
that the contact load distribution for 5 — 0+ is apt to deviate from the one described in
{65). Indeed, it follows from (63) that while

. R(r.0: )
lim

hm R 0:0) = I, rel0,a), 0€[0,2n], (66)

. R(r.0:5)  nyela) 16(1 —v)?
ltm lim = - =

SRR 00) T nl@) T 1= 2004867 (67)

The general variation of the singular contact load distribution as a function of s is iltustrated
n Fig. 4.
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Fig. 4. Contact load distributions on disc {v = 0.25).
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7. STRESS AND DISPLACEMENT

By virtue of (26). (27) and their relations to Z,(&; 5). the stresses in the medium can
also be expressed directly in terms of the function n,. For instance, with the aid of (16), one

finds
=~
U::=26059J $Q.(8,2:9)Z: (559, (ér)dE (68)
o
where
| sgn (z—5)QR(I =v)+d, &) e
QuEzi8) = o gnie—a AT (69)
4I=v) (+QUI=v)+5E+(3—4v)zf =25z )e
+1, z>5
T—3) = R 70)
wnc-o =0 17 <
(a)
ol.‘
nlcoud
Y
-__‘.;\_\Tga. -
Sl et drPriv -2
1.0—7_—-——-
-2.0 . —
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Fig. 5. Distributionof o, (sja = 1. v = 0.25). @) s < 5. (b) = > 5.
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Fig. 6. Vertical displacement u, (s/Ja =1, v =025). (@} s <s. (b) - > 5.

dy =|z—5], dy=z+s. an

In terms of n, and the notation

S(p.r.din,p)= J; ¢ e~ sin ($p)J, (¢ d¢, (72

eqn (68) can be written as

sgn(z=~52(1-v)S(p,r.d,; 1L D)
+d,S(p,r.d;2, 1)
+2(1-v)S(p,r,dy; 1, 1) n.(p)dp. (73)
+((3—4v)z+5)S(p,r,dy; 2, 1)
~2z58(p,r,d;; 3,1)

ucos@ [

o.(r, G,Z) = ﬂ(l —V) .

As the functions S required in (73) can be evaluated in closed form, o.. can be computed
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by ordinary quadrature. Typical distributions of o_. in the half-space are displaved in Fig.

A/

As indicated in (29). the vertical displacement field can be expressed as

-

u(r.8.2y=2cos | Q.53
JU H

:Zl(f.ﬁ) - . )

By virtue of (42). one finds

3—4v)S(p.r.d,; 0. 1)
+d,S(p.r.d 1Y)
cosf | .
w(r.8.z) = ST +(S5=12v+vI)S(p.rods 001 F . (pydp (75)
- - (]
+(3—4v)d.S(p.r.d> 1D
+2zs8(pr.d. 201

which can also be evaluated numerically in a straightforward manner. Some typical results
are given in Fig. 6.

8. CONCLUSION

In this paper, an analytical treatment is presented for the determination of the response
of an elastic half-space under the action of an embedded rigid disc rotating about a
horizontal axis. With the aid of Hankel transforms, a mathematical formulation is developed
for the mixed boundary value problem in the form of dual integral equations. Hlustrative
results on the influence of embedment on the moment-rotation relationship and the stress
ficld, as well as the displacement field, are included. In addition to providing a unificd view
of previous works on the cases of surface and infinite embedment, the present treatment
reveals a severe boundary-layer phenomenon in the contact load distribution which is apt
to be of interest to this class of problems in general.
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