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Abstrad-An analysis is presented for the determination of the rotational response ofa rigid circular
disc embedded in a semi-infinite elastic medium under the action of a rocking moment. With the
aid of Hankel transforms. a rela'led treatment of the mixed boundary value problem is formulated
as dual integral equations. On reduction of the dual integral equations to a Fredholm integral
equation which features a closed-form kernel. solutions to thc inclusion problem are computed. In
addition to providing a unified view of e'listing solutions for zero and infinite embedments. the
present analysis reveals a severe boundary-I'lyer phenomenon which is apt to be of significance to
this class of problem in gencfill. As illustrations, numerical results on the load-displacement relation
and the n:sponse of the embedding medium. as well as the CQntact load distribution. are included.

I. INTRODUCTION

On the subject of structure-medium interaction. onc class of fundamental problems is the
determination of the response of a loaded rigid disc which is in contact with an elastic
medium. These analyses are relevant to engineering in the context of soil-structure inter
action. footing and anchor designs. They arc also related to the analysis of indentation
processes, stress concentrations, and fracture mechanics of composite materials. For this
catcgory of problems, considerable attention has been paid to the case where the disc is
resting on the surface of an elastic half-space as in Boussinesq (1885), Reissner (1937),
Abramov (1939), Reissner and Sagoci (1944), Harding and Sneddon (1945), Sneddon
(1947, 1966), Bycroft (1956), Ulliand (1956), Keer (1967). Spence (1968), and Gladwell
(1969). A variety of problems associated with a disc buried in an infinite medium have also
been considered as in Collins (1962). Keer (1965), Hunter and Gamblen (1974), and
Selvadurai (1976, 1980). On solutions pertaining to a disc embedded at a finite depth in a
half-space, however, only the axisymmetric cases of torsion and axial translation have been
investigated (Pak and Saphores, 1991; Pak and Gobert, 1990).

This paper is concerned with the determination of stresses and displacements in the
interior of a half-space when an cmbedded rigid disc is forced to rotate about a horizontal
centroidal axis. Within the framework of linear elasticity, the asymmetric mixed boundary
value problem is reduced to a set of dual integral equations. Under appropriate limiting
conditIons, the analytical formulation is shown to encompass the corresponding full-space
and surface-disc problems as degenerate cases. Through this exposition, a severe boundary
layer effect on the contact load distribution is revealed. For practical applications, the
rocking stiffness of the embedded disc and the response of the medium as a function of the
embedment depth arc included.

2. MATHEMATICAL FORMULATION

Consider a rigid disc of radius a located at a depth s in a homogeneous, isotropic,
linearly clastic half-space. As shown in Fig. I, the disc is assumed to be undergoing a rigid
body rotation n about the y-axis due to a set ofloads equivalent to a moment. In cylindrical
coordinates, a relaxed treatment of this mixed boundary value problem can be stated in
terms of the components of the displacement field u and the stress field a as follows:
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Fig. I. Rocking rotation of a rigid disc in a half-space.
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(7)

(g)
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Here. R(r. 0; s) denotes the unknown resultant normal contact stress distribution acting on
the disc at == s. As an unbounded region is under consideration. the foregoing requirements
must be adjoined by the regularity conditions at infinity that

( 10)

To obtain a mathematical formulation for the problem under consideration. it is useful
to determine first the displacement response of a half-space under an arbitrary vertical body
force field R(r. 0; s) distributed on the == .\' plane. For this purpose, the method of
potentials by M uki (1960) is useful. As a specific reduction of the general Boussinesq
Somigliano--Galerkin solution. the method entails representing the solutions to the dis
placement equation of equilibrium with zero body-force field in terms of a biharmonic field
<I> and a harmonic field 'fI, i.e"

(I 1)

where

( 12)

in cylindrical coordinates. In terms of the two potentials. the components of the dis
placement vector and the stress tensor can be expressed as

and
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(14)

(15)

(16)

(17)

(18)

(19)

where Jl and \' arc the shear modulus and the Poisson's ratio of the medium. respt.'Ctively.
By virtue of the completeness of the set of eigenfunctions {eim II};, _.~ for the class of
solutions under consider'ltion, one may write

LJ

(II(r. 0.:: ; s) = L (Il",(r. =; skimll

,,.. ... ... ~

".
tP(r,O.::; s) = i: tl'",(r.=: s}t'imll

1#- ~"'L.-

"R(r.f);s)= i: R",(r;S)eimll
, etc.

Owing to the orthogonality of {ei"III}, it is evident that (I f) implies

V',;,v,;,<1>,.. =0, V',;,'fJ", = 0, 'rim

(20)

(21)

(22)

(23)

(24)

In view of the differential operators and boundary conditions involved. it is natural to
appeal to the theory of Hankel transforms in the solution of the foregoing equations. To
this end, onc defines the mtll order Hankel tmnsform as

l"'(~) =1:0 f(r)rJ",(~r)dr (25)

where J", is the Bessel Function of the first kind oforder m. With the aid of (25) with respect
to the radial coordinate. the partial differential equations in (23) can be reduced to two
ordinary differential equations for each pair of~ and it::.

On account of the regularity conditions at infinity in the problem under consideration,
the general solutions can be expressed as
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:: <'>1,
:: > s)

(26)

:: < s}.
::>5

(17)

By virtue of (2H8). the functions A:.,(,;)•...• £:;.(,;). and thus tbe fun solution for the
auxiliary problem. can be determined explicitly in terms of the transform of the Fourier
component R",(r: s) of the contact load distribution. From (I). one may further deduce
that

Accordingly. the vertical component of the displacement field can be expressed as

uAr.O.:::}:::: 2u:,(r.:::}cosf}

where

(28)

(29)

(30)

(3l)

(32)

With the aid of (19) and (30). it can be shown th'it the remaining two conditions (I) 'lOd
(9) of the mixt.-d bound:'iry value problem arc equiv'iknt to the tluul integral equations

(33a)

and

(Db)

where

with the property that

(35)

By setting s := 0 in (33). one linds that the governing equations become

(36a)

and
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• (I-v)
O~(~,O; 0) = -e-'
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(36b)

(37)

Upon interpreting Z,(e; 0) as the transform of the contact normal stress distribution
underneath the disc, the formulation in (36) is identical to the one for a rigid punch in
smooth contact with the surface of a half-space.

3. REDUCTION OF DUAL INTEGRAL EQUATIONS

With the aid of Sonine's integrals as in Noble (1963), eqn (33) can be transformed to

and

(38b)

where

H (.I:) == (S-12V+8V
2

2.1: 2eZ
S

Z
) -2:.

• .. 3-4v + ..s+ 3-4v e .

For further reduction, it is useful to express

(39)

(40)

(41 )

where ".(r) is an unknown function. By taking ".(r) = 0 for r > a, it is evident that the
foregoing representation of Z would satisfy (38b) identically. From the Hankel inversion
theorem, it also follows that (41) yields

(42)

Upon substituting (42) into (38a), one can readily verify that the governing dual integral
equations are elfuivalent to a Fredholm integral equation of the second kind

where

"Ar) +rK.(r, p)".(p) dp = [.(r) (43)
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K,(1'.p) = \.;P {' ~H,(C,)11 :.(1'~)Jl :.(p~)d;
..,,11

. 8( I-v)
r(1') =·--·01'.. J- ..h (45)

For the present problem. the kernel of the integral equation can be evaluated in closed form
as

where

K,(1'. p) = k(r- 1') -k(1'+p) (46)

(47)

For the case of s = O. the analysis of the dual integral equations is considerably simpler. In
l~lCt. by the same transformation in (41). the solution to (36) can be written as

Or
'1,,(1') =

1-\'
(48)

4. SOI.tITION 01' I'RU)1I0LM INTHiRt\L H.){Jt\T10N

Ikfon: prlH:eeding to the treatment of the gem:ral emoedment proolem. it is relevant
to examine some special cases for which dosed-form solutions arc available,

('(/se ..I : s -~ I

For the case of a disc buried in an infinite medium, the kernel (46) degenerates to zero
and the solution can be immediately written as

X( I -I')
'1,(1') == Or.

3-4v
(49)

Cuse B. s == 0
As indicated in the preceding section. the solution to the case oCa disc acting on a halC

space IS

Or
'I,,(r} == I_I" (50)

An interesting but peculiar result though is the solution obtained in the limit of s ..... 0 in the
general embedment problem. To this end. it is useful to recognize that

\'\" n:
- -i':':- ._,.•,..... J(x).
(x- +·k)' 4

, ..
S.c n: ..

• .. 1..... ()(x).
(x-+·h-) 64

.1" 3n: •
., . ' .. ,..... ()(x), as .1' ..... 0

(x- +4s-) 256
(51 )

where (S(x) stands for a symmetric Dime delta,function in the theory of distribution. With
the aid of (51). one can readily see that
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Fig. 2. Typical solutions for 1/. (v = 0.25).

(52)

and the Fredholm integral cquation yiclds

1
Or
r:'~'

'10+ (r) =
16(I-v)Oa

i 1-20v+8v2
'

r<a)
r-+a

(53)

which exhibits a tinite jump at the edge of the disc.

Cast' C: 0 < s < (fj

For finite embedments. numerical solutions of the integral equation can be obtained
by standard quadrature methods. Typical solutions for tI. are shown in Fig. 2. As portended
by (53), it can be seen that there is a severe boundary layer in the solution at the edge region
of the disc as the embedment depth tends to zero. The implications of the jump of tI. and
the emergence of the boundary layer in such a limit process will be explored in a later
section.

5. ROCKING STIFFNESS

The moment M I , required to sustain the rotation n is defined by

III 12"M)' = 0 0 R(r,O;s}r2 cosOdOdr. (54)

By virtue of (28). (31). (39), (42). and the identity

r<a, (55)

(54) can be simplified to



396 R. Y. S. PAl(. and 1.-0. '\II. SAPHORES

• l-

v; 0.0

.-------------------i§------- l
o.. ~ f................... -....................•.•••.......... r

.-'
0.25

,,,
9

7

,,
" - - - - - -'_·0.1 _._._.-._.- _.-...... - - - _._._._.- - -

f ,Ii" _---------------------------, //,,--
1/';-

f /1/

/ ....;'/.
~ :i"

5 V-I
. !"
f

}

a_a 2.0 4.0
sin

6.0 8.0 10.0
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(56)

which l.":ln he evaluated directly ill h:rms or the solution of the Fredholm integral equation.
For S -. I • ()(,) yidds

(57)

as in Sdv~H.lltrai (19XO)_ For s =: 0, Olll.: finds

(58)

which is in agrl.:cment with Abramov (1939) and Bycroft (1956). The general rocking
stilfness. whid1 is ddilled as

(59)

as a fum:tion of.'i is illustrated in Fig. 3. From the display. it is cvidcnt that the stiffness
im.:reases with the depth of embedment as well as Poisson's ratio. As s reaches the value of
4(1, however, the stilfness appropriate to s .... 0Cj is virtually attained.

6. CONTACT LOA!) D1STRIIIUTIO~

By virtlle of the Hankel inversion theorem. eqn (42) yields the distribution R,(r; .1')

pertaining to the contact load on the disc as

(60)

With the aid of the identity
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{

O.

rL. sin (~p)Jo(~r) d~ = 1 •Jo ~ .
...; p. -r·

one finds the resultant contact load distribution

I' <r}
p>r (61)

.. _ 41J cos 6 ~ fa '1..(1') d
R(r.9.s) - - d ~ p.

n r , y p1_ r 1

With an integration by parts. eqn (62) can be reduced to

R(r. f.}; s) = 411 [ a'1,(a) _ ~ fa 1''1;(1') dpJcos 6.
n rJa1-r1 r J J p2_ r2

For s .... x. eqn (63) yields

32( I - v)11 Or cos ()
R(r.O; Xi) = (3 4)'~' re[O.a).

n - v ya2_r2

For s = O. one finds

411 Or cos ()
J~(r (}. 0) = ---- -~-- r E [0 a)

•. 7t(I-v) Ja2-r2' •.

(62)

(63)

(64)

(65)

In view of the differeOl.:e between the solutions (53) and (50). however. one can anticipate
that the contact load distribution for .\' .... 0 + is apt to deviate from the one described in
(65). Indeed. it follows from (63) that while

. R(r.fJ;s)

'
11111 J'> () 0" = I, r E [0, tI}, () E [0, 2n],
••• 0 ,(r. ; )

(66)

(67)

The general variation of the singular contact load distribution as a function ofs is illustrated
in Fig. 4.
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7. STRESS AND DISPLACEMENT

By virtue of(26). (17) and their relations to ZI(.;;5). the stresses in the medium can
also be expressed directly in terms of the function '1,. For instance. with the aid of (16). one
finds

(68)

where

(69)

{
+ I.

sgn(:-s) =
-I.

: > s}.
:<.1'

(70)
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d, = Iz-sl, d2 = z+S. (71)

In terms of '1. and the notation

(72)

eqn (68) can be written as

JJ. cos 9 fa
a::(r, 9, z) = n(1 _ v) Jo

sgn(:-s)2(l-v)S(p,r,d,: 1,1)

+d,S(p,r,d,; 2.1)

+2(1 - v)S(p, r, d2 : I, I) '1.(p) dp.

+«3-4v)z+s)S(p,r,d2 ; 2,1)

-2zsS(p,r,d2 ; 3, I)

(73)

As the functions S required in (73) can be evaluated in closed form, a:: can be computed
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by ordinary quadrature. Typical distributions of (),; in the half-space are displayed in Fig..
5.

As indicated in (29). the vertical displacement field can be expressed as

By virtue of (42). one finds

(74)

cos e 1"1I.(r, 0,:) =-----
. 2rr(l-v) 0

(3 -4\')5(pJ, d l ; 0, I)

+d,S(pJ.d l : I. I)

+(5-12~'+v')S(pJ,d::O,1) 'l,(p)dp

+(3-4v)d:5(p.r,d,: \, I)

+2:s5{p.r,d:: 2, I)

(75)

which can also be evaluated numerically in a straightforward manner. Some typical results
are given in Fig. 6.

II CONCLUSION

In this paper, an analytical treatment is presented for the determination of the response
of an elastic half-space under the action of an embedded rigid disc rotating aoout a
horizontal axis. With the aid of Hankel transforms, a mathematical formulation is developed
for the mixed boundary value problem in the form of dual integral equations. Illustrative
results on the inlluence of embedment on the moment-rotation relationship and the stress
fldd, as well as the displacement field, arc included. In addition to providing a unified view
of previous works on the eases of surf~lce and infinite embedment, the present treatment
reveals a severe boundary-layer phenomenon in the contact load distribution which is apt
to be of interest to this class of problems in general.
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